Showing posts with label Detector. Show all posts
Showing posts with label Detector. Show all posts

Automatic Heat Detector

This Automatic Heat Detector circuit uses a complementary pair comprising npn metallic transistor T1 (BC109) and pnp germanium transistor T2 (AC188) to detect heat (due to outbreak of fire, etc) in the vicinity and energise a siren. The collector of transistor T1 is connected to the base of transistor T2, while the collector of transistor T2 is connected to relay RL1. The second part of the circuit comprises popular IC UM3561 (a siren and machine-gun sound generator IC), which can produce the sound of a fire-brigade siren. Pin numbers 5 and 6 of the IC are connected to the +3V supply when the relay is in energized state, whereas pin 2 is grounded.

Circuit diagram:
Automatic Heat Detector
Automatic Heat Detector Circuit

Overheat Detector Alarm LM35

At the heart of this over heat detector circuit is a precision integrated temperature sensor type LM35 (IC1), which provides an accurately linear and directly proportional output in mV, over the zero to +155 degrees C temperature range.

The LM35 develops an output voltage of 10 mV/K change in measured temperature. Designed to draw a minimal current of its own, the LM35 has very low self heating in still air. Here the output of the LM35 is applied to the non-inverting input of a comparator wired around a CA3130 opamp (IC2). A voltage divider network R3-P1 sets the threshold voltage, at the inverting input of the opamp. The threshold voltage determines the adjustable temperature trip level at which the circuit is activated.

Circuit diagram:


Overheat Detector Alarm Schematic

Overheat Detector Alarm/Switch Circuit Diagram

Ultrasonic Distant Obstacle Detector

The first sensor a robot usually gets fitted with is an obstacle detector. It may take three different forms, depending on the type of obstacle you want to detect and also — indeed, above all — on the distance at which you want detection to take place. For close or very close obstacles, reflective IR sensors are most often used, an example of such a project appears elsewhere in this blog. These sensors are however limited to distances of a few mm to ten or so mm at most. Another simple and frequently-encountered solution consists of using antennae-like contact detectors or ‘whiskers’, which are nothing more than longer or shorter pieces of piano wire or something similar operating microswitches.

Circuit diagram:



Peak Indicator

A simple circuit to detect a peak of musical or audio signal. Each time where the level of signal exceeds the level + 4dB, turns on led D1. It is useful in each channel of console of sound, in final amplifiers or in that other application, to we needed. With the prices of circuit, the indicate begins with levels above + 4 dB (1.25V rms). For adaptation in different levels of signal, we can use a trimmer, before capacitor C1.


Circuit Diagram:


Peak Indicator Circuit Diagram

Mini Alarm



This mini alarm circuit, enclosed in a small plastic box, can be placed into a bag or handbag. A small magnet is placed close to the reed switch and connected to the hand or the clothes of the person carrying the bag by means of a tiny cord. If the bag is snatched abruptly, the magnet looses its contact with the reed switch, SW1 opens, the circuit starts oscillating and the loudspeaker emits a loud alarm sound. A complementary transistor-pair is wired as a high efficiency oscillator, directly driving a small loudspeaker. Low part-count and 3V battery supply allow a very compact construction. This circuit is suit for doors & windows alarm.


Circuit Diagram: