30 Watt Audio Power Amplifier Schematic

Including Preamp, Tone Controls, Reg dc Power Supply, 18 Watt into 8 Ohm - 30W into 4 Ohm loads
This project was a sort of challenge: designing an audio amplifier capable of delivering a decent output power with a minimum parts count, without sacrificing quality. The Power Amplifier section employs only three transistors and a handful of resistors and capacitors in a shunt feedback configuration but can deliver more than 18W into 8 Ohm with 0.08% THD @ 1KHz at the onset of clipping (0.04% @ 1W - 1KHz and 0.02% @ 1W - 10KHz) and up to 30W into a 4 Ohm load.

To obtain such a performance and to ensure overall stability of this very simple circuitry, a suitable regulated dc power supply is mandatory. This is not a snag because it also helps in keeping noise and hum of the preamp to very low levels and guarantees a predictable output power into different load impedance. Finally, as the amplifier requires only a single rail supply, a very good dc voltage regulator capable of supplying more than 2 Amps @ 40V can be implemented with a few parts also.


Circuit diagram:
 30 watt mosfet audio power amplifier schematic circuit diagram

Music Generator, IC UM66

UM66 is a pleasing music generator IC which works on a supply voltage of 3V. the required 3V supply is given through a zener regulator. its out put is taken from the pin no1 and is given to a push pull amplifier to drive the low impedance loud speaker. A class A amplifier before push pull amplifier can be used to decrees the noise and improve out put. UM66 is a 3 pin IC package just looks like a BC 547 transistor.

Circuit diagram:
 A music - melody generator schematic Circuit Diagram using UM66
A Continuous Music Generator Circuit Diagram

12 Volt Car Battery Charger

Unlike many units, this battery charger continuously charges at maximum current, tapering off only near full battery voltage. In this unit, the full load current of the supply transformer/rectifier section was 4.4A. It tapers off to 4A at 13.5V, 3A at 14.0V, 2A at 14.5V and 0A at 15.0V.

Circuit operation:
Transistor Q1, diodes D1-D3 and resistor R1 form a simple constant current source. R1 effectively sets the current through Q1 - the voltage across this resistor plus Q1's emitter-base voltage is equal to the voltage across D1-D3. Assuming 0.7V across each diode and across Q1's base-emitter junction, the current through R1 is approximately 1.4/0.34 = 4.1A. IC ensures that Q1 (and thus the constant current source) is turned on.

When the battery has fully charged, the current through IC drops to a very low value and so Q1 turns off (since there is no longer any base-emitter current). R2 limits the current through IC. It allows enough current to flow through the regulator so that Q1 is fully on for battery voltages up to about 13.5V. Decreasing the value of R2 effectively increases the final battery voltage by raising the current cutoff point. Conversely, a diode in series with one of the battery leads will reduce the fully-charged voltage by about 0.7V.


Circuit diagram:
 12 volt car battery charger schematic circuit diagram
12 Volt Car Battery Charger Circuit Diagram

Cell Phone and iPod Battery Charger Circuit

Charge your iPod without connecting it to a computer!
Using the USB port on your computer to charge your player’s batteries is not always practical. What if you do not have a computer available at the time or if you do not want to power up a computer just for charging? Or what if you are traveling? Chargers for Mobile Phones iPods and MP3 players are available but they are expensive and you need separate models for charging at home and in the car.

This charger can be used virtually anywhere. While we call the unit a charger, it really is nothing more than a 5V supply that has a USB outlet. The actual charging circuit is incorporated within the iPOD or MP3 player itself, which only requires a 5V supply. As well as charging, this supply can run USB-powered accessories such as reading lights, fans and chargers, particularly for mobile phones.

The supply is housed in a small plastic case with a DC input socket at one end and a USB type "A" outlet at the other end, for connecting to Mobile Phone, an iPod or MP3 player when charging. A LED shows when power is available at the USB socket. Maximum current output is 660mA, more than adequate to run any USB-powered accessory.

Peak Indicator

A simple circuit to detect a peak of musical or audio signal. Each time where the level of signal exceeds the level + 4dB, turns on led D1. It is useful in each channel of console of sound, in final amplifiers or in that other application, to we needed. With the prices of circuit, the indicate begins with levels above + 4 dB (1.25V rms). For adaptation in different levels of signal, we can use a trimmer, before capacitor C1.


Circuit Diagram:


Peak Indicator Circuit Diagram

Mini Alarm



This mini alarm circuit, enclosed in a small plastic box, can be placed into a bag or handbag. A small magnet is placed close to the reed switch and connected to the hand or the clothes of the person carrying the bag by means of a tiny cord. If the bag is snatched abruptly, the magnet looses its contact with the reed switch, SW1 opens, the circuit starts oscillating and the loudspeaker emits a loud alarm sound. A complementary transistor-pair is wired as a high efficiency oscillator, directly driving a small loudspeaker. Low part-count and 3V battery supply allow a very compact construction. This circuit is suit for doors & windows alarm.


Circuit Diagram:

Powerful Security Siren Alarm

This circuit able to deliver more power than the siren circuit tha One-IC two-tones Siren. NO ICs are needed to build this alarm. A complementary transistor pair (Q2 & Q3) is wired as a high efficiency oscillator, directly driving the loudspeaker. Q1 ensures a full charge of C2 when power is applied to the circuit. Pressing on P1, C2 gradually discharges through R8: the circuit starts oscillating at a low frequency that increases slowly until a high steady tone is reached and kept indefinitely. When P1 is released, the output tone frequency decreases slowly as C2 is charged to the battery positive voltage through R6 and the Base-Emitter junction of Q2. When C2 is fully charged the circuit stops oscillating, reaching a stand-by status.


Circuit Diagram:

Audio Booster

Small and portable audio booster, Can be built on a veroboard

The amplifier's gain is nominally 20 dB. Its frequency response is determined primarily by the value of just a few components-primarily C1 and R1. The values of the schematic diagram provide a response of ±3.0 dB from about 120 Hz to better than 20,000 Hz.Actually, the frequency response is ruler flat from about 170 Hz to well over 20,000 Hz; it's the low end that deviates from a flat frequency response. The low end's roll-off is primarily a function of capacitor C1(since RI's resistive value is fixed). If C1's value is changed to 0.1 pF, the low end's comer frequency-the frequency at which the low-end roll-off starts-is reduced to about 70 Hz. If you need an even deeper low-end roll-off, change C1 to a 1.0 pF capacitor; if it's an electrolytic type, make certain that it's installed into the circuit with the correct polarity, with the positive terminal connected to Q1's base terminal.

Circuit diagram:


Audio Booster Circuit Diagram

Clap Sensitive On-Off Relay

This 3V Battery operated circuit can be used to activate a relay with a hand clap. Further claps will turn-off the relay. The circuit's sensitivity was deliberately reduced, in order to avoid unpredictable operation. Therefore, a loud hand clap will be required to allow unfailing on-off switching. Q1 acts as an audio amplifier. IC1 timer, wired as a monostable, provides a clean output signal and a reasonable time delay in order to allow proper switching of the following bistable circuit. A discrete-components circuit formed by Q2, Q3 and related parts was used for this purpose, in order to drive the Relay directly and to allow 3V supply operation.


Circuit Diagram:


Clap Sensitive on-off Relay Circuit Diagram

5 Watt Class-A Audio Amplifier

Simple 5 Watt Amplifier circuit, No cross-over distortion

This solid-state push-pull single-ended Class A circuit is capable of providing a sound comparable to those valve amplifiers, delivering more output power (6.9W measured across a 8 Ohm loudspeaker cabinet load), less THD, higher input sensitivity and better linearity. Voltage and current required for this circuit are 24V and 700mA respectively, compared to 250V HT rail and 1A @ 6.3V filament heating for valve-operated amplifiers. The only penalty for the transistor operated circuit is the necessity of using a rather large Heatsink for Q2 and Q3 (compared to the maximum power delivered).In any case, the amount of heat generated by this circuit can be comparable to that of a one-valve amplifier. An optional bass-boost facility can be added, by means of R5 and C5.


Circuit diagram:


5 Watt Class-A Audio Amplifier Circuit Diagram

220V AC Lamp Toggle Switch


Compact, transformerless circuitry No relays employed

Due to the low current drawing, the circuit can be supplied from 230Vac mains without a transformer. Supply voltage is reduced to 12Vdc by means of C1 reactance, a two diode rectifier cell D1 & D2 and Zener diode D3. IC1A, IC1B, R2, R3 and C3 form a reliable bounce-free toggle switch operated by P1. R4 and C4, wired to pin #6 of IC1B reset the circuit (lamp off) when power supply is applied. IC1C and IC1D wired in parallel act as a buffer, driving the Gate of the Triac through R5.


Circuit diagram:



220V AC Lamp Toggle Switch Circuit Diagram

Emergency Light and Alarm

This Emergency Light and Alarm circuit comes with 4 switchable options. It is permanently plugged into a mains socket and NI-CD batteries are trickle-charged. When a power outage occurs, the lamp automatically illuminates. Instead of illuminating a lamp, an alarm sounder can be chosen. When power supply is restored, the lamp or the alarm is switched-off. A switch provides a "latch-up" function, in order to extend lamp or alarm operation even when power is restored.


Circuit Diagram:


Emergency Light and Alarm Circuit Digram

25 Watt Audio Power Amplifier

This is a 25 Watt basic power amp that was designed to be (relatively) easy to build at a reasonable cost. It has better performance than the standard STK module amps that are used in practically every mass market stereo receiver manufactured today. This high quality simple design doesn't need a preamplifier

Circuit diagram:


25 Watt Audio Amplifier Circuit Diagram

Fire Alarm Using Thermistor

This small and simple fire alarm circuit uses thermistor as the heat sensor. When temperature increases, its resistance decreases, and vice versa. At normal temperature, the resistance of the Thermistor (TH1) is approximately 10 kilo-ohms, which reduces to a few ohms as the temperature increases beyond 100 C. The circuit uses readily available components and can be easily constructed on any general-purpose PCB. You can used this circuit as Home-Security purpose.


Circuit Diagram:

Fire Alarm Using Thermistor schematic

Fire Alarm Circuit Diagram

Low Cost Hearing Aid

Small and portable hearing aid for old men and old women.  

This low-cost, general-purpose electronic hearing aid works off 3V DC (2x1.5V battery). The circuit can be easily assembled on a veroboard. For easy assembling and maintenance, use an 8-pin DIP IC socket for TDA2822M.

Circuit Diagrams:
Low Cost Hearing Aid Schematic A Low Cost hearing Aid Schematic

Car-Bulb Flasher

Suitable for alerting purpose, Drives 12v Car bulbs
This astonishingly simple circuit allows one or two powerful 12V 21W car bulbs to be driven in flashing mode by means of a power MosFet. Devices of this kind are particularly suited for road, traffic and yard alerts and in all cases where mains supply are not available but a powerful flashing light are yet necessary.

Circuit Diagram:
Car-Bulb Flasher schematic

Mobile Phone Battery Charger

Small and portable unit, Can be assembled on veroboard
Mobile phone chargers available in the market are quite expensive. The circuit presented here comes as a low-cost alternative to charge mobile telephones/battery packs with a rating of 7.2 volts, such as Nokia 6110/6150.


Circuit diagram:

Mobile Phone Battery Charger Circuit Diagram

100V-230V LED Circuit Schematic

Here is a simple and powerful LED circuit that can be operated directly from the AC 100 volt to AC 230 Volts mains supply. The circuit can be used as mains power locator or night lamp etc.. The resistor R1,R2 and capacitor C1 provides necessary current limiting. The circuit is sufficiently immune against voltage spikes and surges.


Circuit's pictures:

 220_Volt_AC_Powered_LED_Circuit_Diagram_Schematic_Circuit_Diagram

Front View of 220 Volt AC Operated LED Circuit

Audio Indicator LM741

This circuit can be used to remotely monitor a loudspeaker, alarm, or audio source for presence of an audio waveform. It can also be directly connected across loudspeaker terminals used as a peak indicator.

Circuit diagram:
Audio Indicator LM741 schematic
click for large picture
Audio Indicator Circuit Diagram Using LM741

Courtesy Light IC 555

This circuit is intended to let the user turn off a lamp by means of a switch placed far from bed, allowing him enough time to lie down before the lamp really switches off. Obviously, users will be able to find different applications for this circuit in order to suit their needs.



Circuit diagram :

Courtesy Light IC 555 schematic



Dark Activated Terrace Lamp

Compact circuit, Can be wired in parallel to existing switches
 
This device allows one or more lamps to illuminate at sunset and turn off at dawn.Q1 and Q2 form a trigger device for the SCR, providing short pulses at 100Hz frequency. Pulse duration is set by R2 and C1.When the light hits R1, the photo resistor assumes a very low resistance value, almost shorting C1 and preventing circuit operation. When R1 is in the dark, its resistance value becomes very high thus enabling circuit operation.

Circuit Diagram:
 
Dark Activated 220 volt AC Lamp Circuit Diagram

Amplified Ear

Useful to listen in faint sounds, 1.5V Battery operation

This circuit, connected to 32 Ohm impedance mini-earphones, can detect very remote sounds. Useful for theatre, cinema and lecture goers: every word will be clearly heard. You can also listen to your television set at a very low volume, avoiding to bother relatives and neighbors. Even if you have a faultless hearing, you may discover unexpected sounds using this device: a remote bird twittering will seem very close to you.

Circuit Diagram:


Mini Amplifier for HEaring Ability Schematic

Variable Dc Power Supply

A variable dc power supply is one of the most useful tools on the electronics hobbyist's workbench. This circuit is not an absolute novelty, but it is simple, reliable, "rugged" and short-proof, featuring variable voltage up to 24V and variable current limiting up to 2A. You can adapt it to your own requirements as explained in the notes below.


Circuit Diagram :
Variable Dc Power Supply Schematic

Voltage Range: 0.7V to 24V, Current Range: 50mA to 2A