3-30V 3A Adjustable DC Power Supply

A regulated power supply for all general circuits, Based on a stablized DC voltage of 30 volt
This power supply is meant as an auxiliary or as a permanent power supply for all common circuits based on a stabilized DC voltage between 3 and 30V provided that the consumption does not exceed 3A. Of course this power supply unit can also be used for other purposes. Be replacing the trimmer by a potentiometer, it may even be used as an adjustable power supply unit. A good quality heatsink must be used.

Picture of project:
 3 -30 volt dc 3 ampere power supply schematic circuit diagram
3 TO 30 Volt 3 Ampere DC Power Supply

NiCd Battery Charger With Reverse Polarity Protection

Small and portable unit, Can charge multiple batteries at once
This NiCd battery Charger can charge up to 7 NiCd batteries connected in series. This number can be increased if the power supply is increased with 1.65V for each supplementary battery. If Q2 is mounted on a proper heatsink, the input voltage can be increased at a maximum of 25V. Unlike most of comercial NiCd chargers available on the market, this charger has a reverse polarity protection. Another great quality is that it does not discharge the battery if the charger is disconnected from the power supply.

Usually , NiCd batteries must be charged in 14 hours at a charging current equal with a tenth percent from battery capacity. For example, a 500 mAh is charged at 50 mA for 14 hours. If the charging current is too high this will damage the battery. The level of charging current is controlled with P1 between 0 mA – 1000 mA. Q1 is opened when the NiCd battery is connected with the right polarity or if the output terminals are empty. Q2 must be mounted on a heatsink. If you cannot obtain a BD679, then replace it with any NPN medium power Darlington transistor having the output parameters at 30V and 2A. By lowering R3 value the maximum output current can be increased up to 1A.

Circuit diagram:
NiCd Battery Charger With Reverse Polarity Protection Schematic

NiCd Battery Charger With Reverse Polarity Protection

45 Watt Class-B Audio Power Amplifier

45W into 8 Ohm - 69W into 4 Ohm, Easy to build - No setup required
These goals were achieved by using a discrete-components op-amp driving a BJT complementary common-emitter output stage into Class B operation. In this way, for small output currents, the output transistors are turned off, and the op-amp provides all of the output current. At higher output currents, the power transistors conduct, and the contribution of the op-amp is limited to approximately 0.7/R11. The quiescent current of the op-amp biases the external transistors, and hence greatly reduces the range of crossover.

The idea sprang up from a letter published on Wireless World, December 1982, page 65 written by N. M. Allinson, then at the University of Keele, Staffordshire. In this letter, op-amp ICs were intended as drivers but, as supply voltages up to +/- 35V are required for an amplifier of about 50W, the use of an op-amp made of discrete-components was then considered and the choice proved rewarding.

The discrete-components op-amp is based on a Douglas Self design. Nevertheless, his circuit featured quite obviously a Class A output stage. As for proper operation of this amplifier a Class B output stage op-amp is required, the original circuit was modified accordingly. Using a mains transformer with a secondary winding rated at the common value of 25 + 25V (or 24 + 24V) and 100/120VA power, two amplifiers can be driven at 45W and 69W output power into 8 and 4 Ohms respectively, with very low distortion (less than 0.01% @ 1kHz and 20W into 8 Ohms).

This simple, straightforward but rugged circuit, though intended for any high quality audio application and, above all, to complete the recently started series of articles forming the Modular Preamplifier Control Center, is also well suited to make a very good Guitar or Bass amplifier. Enjoy!

Circuit diagram:
45 Watt Class-B Audio Power Amplifier Schematic
45W Class-B Amplifier Circuit Diagram

NiMh and NiCd Battery Charger

This automatic NiCd charger for 9V NiCd batteries is using 555 timer properties and is very easy to build. Why is an automatic 9 volts NiCd battery charger? Because you can leave the battery for charging as much as you like: it will be always completely charged and ready for use when is needed. It wont be overcharged and it will not discharge. With the values presented in the circuit diagram, the battery charger NiCd circuit is suitable for 6V and 9V batteries.

9 volt at 200mA NiMh battery picture

Mobile Phone Travel Charger

Charge Your Mobile Phone While Enjoying The Journey
Here is an ideal Mobile charger using 1.5 volt pen cells to charge mobile phone while traveling. It can replenish cell phone battery three or four times in places where AC power is not available. Most of the cellphone batteries are rated at 3.6 V/500 mA. A single pen torch cell can provide 1.5 volts and 1.5 Amps current. So if four pen cells are connected serially, it will form a battery pack with 6 volt and 1.5 Amps current. When power is applied to the circuit through S1, transistor Q1 conducts and Green LED lights.

When Q1 conducts Q2 also conducts since its base becomes negative. Charging current flows from the collector of Q1. To reduce the charging voltage to 4.7 volts, Zener diode D2 is used. The output gives 20 mA current for slow charging. If more current is required for fast charging, reduce the value of R4 to 47 ohms so that 80 mA current will be available. Output points are used to connect the charger with the mobile phone. Use suitable pins for this and connect with correct polarity.

Circuit diagram:
Mobile Phone Travel Charger Schematic

Mobile Phone Travel Charger

Plant Watering Watcher

A flashing LED signals the necessity to water a plant, 3V powered circuit
This circuit is intended to signal when a plant needs water. A LED flashes at a low rate when the ground in the flower-pot is too dry, turning off when the moisture level is increasing. Adjusting R2 will allow the user to adapt the sensitivity of the circuit for different grounds, pots and probe types.

Improvements:

This little gadget encountered a long lasting success amongst electronics enthusiasts since its first appearance on this website in 1999. Nevertheless, in the correspondence exchanged during all these years with many amateurs, some suggestions and also criticism prompted me to revise thoroughly the circuit, making some improvements requiring the addition of four resistors, two capacitors and one transistor.

12V Speed Controller Dimmer

This handy circuit can be used as a speed controller for a 12V motor rated up to 5A (continuous) or as a dimmer for a 12V halogen or standard incandescent lamp rated up to 50W. It varies the power to the load (motor or lamp) using pulse width modulation (PWM) at a pulse frequency of around 220Hz.

SILICON CHIP has produced a number of DC speed controllers over the years, the most recent being our high-power 24V 40A design featured in the March & April 2008 issues. Another very popular design is our 12V/24V 20A design featured in the June 1997 issue and we have also featured a number of reversible 12V designs.

Circuit looks like:

12V motor speed controller or lamp dimmer schematic circuit

For many applications though, most of these designs are over-kill and a much simpler circuit will suffice. Which is why we are presenting this basic design which uses a 7555 timer IC, a Mosfet and not much else. Being a simple design, it does not monitor motor back-EMF to provide improved speed regulation and nor does it have any fancy overload protection apart from a fuse. However, it is a very efficient circuit and the kit cost is quite low.